System of Equations
\begin{align*}
\text{(1)}\quad & 2x + y - z = 8 \\
\text{(2)}\quad & x - 3y + 2z = -3 \\
\text{(3)}\quad & -x + y + 5z = 7
\end{align*}
Step 1: Solve Equation (2) for x
x = 3y - 2z - 3
Step 2: Substitute into Equations (1) and (3)
Substitute into (1):
2(3y - 2z - 3) + y - z = 8
6y - 4z - 6 + y - z = 8
7y - 5z = 14 \quad \text{(Equation 4)}
Substitute into (3):
-(3y - 2z - 3) + y + 5z = 7
-3y + 2z + 3 + y + 5z = 7
-2y + 7z = 4 \quad \text{(Equation 5)}
Step 3: Solve the 2-variable System
\text{Equation 4: } 7y - 5z = 14 \\
\text{Equation 5: } -2y + 7z = 4
Multiply to eliminate y:
2(7y - 5z) = 14 \cdot 2 \Rightarrow 14y - 10z = 28 \\
7(-2y + 7z) = 4 \cdot 7 \Rightarrow -14y + 49z = 28
Add:
(14y - 10z) + (-14y + 49z) = 28 + 28 \\
39z = 56 \Rightarrow z = \frac{56}{39}
Step 4: Solve for y
From:
7y - 5z = 14 \Rightarrow y = \frac{14 + 5z}{7}
Substitute z = \frac{56}{39} :
y = \frac{14 + 5 \cdot \frac{56}{39}}{7} = \frac{14 + \frac{280}{39}}{7} = \frac{\frac{546 + 280}{39}}{7} = \frac{826}{273}
Step 5: Solve for x
From:
x = 3y - 2z - 3
Substitute y = \frac{826}{273},\ z = \frac{56}{39} :
3y:
3 \cdot \frac{826}{273} = \frac{2478}{273}
2z:
2 \cdot \frac{56}{39} = \frac{112}{39} = \frac{784}{273}
Then:
x = \frac{2478 - 784 - 819}{273} = \frac{875}{273}
Final Answer
x = \frac{875}{273}, \quad y = \frac{826}{273}, \quad z = \frac{56}{39}