The “QTREE” problem on SPOJ involves answering queries about paths in a tree. Specifically, the problem typically requires calculating the sum of values associated with the nodes along the path between two nodes in a tree.
Problem Overview
Given:
- A tree with
N
nodes. - Each node has a value.
- You need to efficiently answer multiple queries asking for the sum of values along the path between two nodes
u
andv
.
Key Concepts
-
Tree Representation: Use an adjacency list to represent the tree.
-
Lowest Common Ancestor (LCA): The LCA of two nodes is the deepest node that is an ancestor to both nodes. Finding the LCA helps break the path into segments that can be summed easily:
[
\text{Sum}(u, v) = \text{Sum}(1, u) + \text{Sum}(1, v) - 2 \times \text{Sum}(1, \text{LCA}(u, v)) + \text{Value}(\text{LCA}(u, v))
] -
DFS for Preprocessing: Perform a DFS traversal to preprocess information needed for answering queries, such as parent nodes and depths.
-
Binary Lifting: This technique allows for efficient LCA queries in logarithmic time after a linear time preprocessing phase.
C++ Implementation
Here’s a step-by-step implementation of the QTREE problem:
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
const int MAXN = 100005; // Maximum number of nodes
const int LOG = 20; // Sufficient for N <= 10^5
vector<int> tree[MAXN];
int parent[MAXN][LOG];
int depth[MAXN];
long long sumToRoot[MAXN];
long long nodeValue[MAXN]; // Store values associated with nodes
void dfs(int node, int par, long long currentSum) {
parent[node][0] = par; // Set the immediate parent
depth[node] = depth[par] + 1; // Set the depth of the current node
sumToRoot[node] = currentSum + nodeValue[node]; // Calculate sum to root
for (int child : tree[node]) {
if (child != par) {
dfs(child, node, sumToRoot[node]); // Recur for child nodes
}
}
}
// Preprocessing for Binary Lifting
void preprocess(int N) {
for (int j = 1; j < LOG; ++j) {
for (int i = 1; i <= N; ++i) {
if (parent[i][j - 1] != -1) {
parent[i][j] = parent[parent[i][j - 1]][j - 1];
}
}
}
}
// Function to find the LCA of u and v
int lca(int u, int v) {
if (depth[u] < depth[v]) {
swap(u, v);
}
// Lift u to the same depth as v
for (int j = LOG - 1; j >= 0; --j) {
if (depth[parent[u][j]] >= depth[v]) {
u = parent[u][j];
}
}
// If they meet, return the LCA
if (u == v) return u;
for (int j = LOG - 1; j >= 0; --j) {
if (parent[u][j] != parent[v][j]) {
u = parent[u][j];
v = parent[v][j];
}
}
return parent[u][0]; // Return the LCA
}
int main() {
int N, Q;
cin >> N;
// Read node values
for (int i = 1; i <= N; ++i) {
cin >> nodeValue[i];
}
// Read tree edges
for (int i = 0; i < N - 1; ++i) {
int u, v;
cin >> u >> v;
tree[u].push_back(v);
tree[v].push_back(u);
}
// Initialize
for (int i = 1; i <= N; ++i) {
fill(parent[i], parent[i] + LOG, -1);
}
// Perform DFS to populate parent, depth, and sumToRoot
dfs(1, 0, 0);
preprocess(N);
// Read queries
cin >> Q;
while (Q--) {
int u, v;
cin >> u >> v;
int ancestor = lca(u, v);
long long result = sumToRoot[u] + sumToRoot[v] - 2 * sumToRoot[ancestor] + nodeValue[ancestor];
cout << result << endl;
}
return 0;
}
Explanation of the Code
-
Data Structures:
tree
: An adjacency list to store the tree.parent
: A 2D array for binary lifting to store ancestors.depth
: An array to store the depth of each node.sumToRoot
: An array to keep track of the cumulative sum of node values from the root to each node.nodeValue
: Stores values for each node.
-
DFS Function:
- Initializes
parent
,depth
, andsumToRoot
during the tree traversal. - Recursively processes child nodes.
- Initializes
-
Binary Lifting Preprocessing:
- Prepares the
parent
array for efficient LCA queries.
- Prepares the
-
LCA Function:
- Computes the LCA using the binary lifting technique.
-
Main Function:
- Reads input values and tree structure.
- Processes queries and computes the required sums using the previously calculated data.
Complexity
- Preprocessing: (O(N \log N))
- Querying: (O(\log N)) per query.
- Total time for
Q
queries: (O(Q \log N)).
This solution efficiently handles the tree and query structure, allowing for quick calculations. Let me know if you have any questions or need further explanations!